If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-2y=0
a = 10; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·10·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*10}=\frac{0}{20} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*10}=\frac{4}{20} =1/5 $
| 60=6r+12 | | 4m=6m-8/3 | | x^2+6+36=0 | | 8x+3=31 | | X^2-5y^2-1232=0 | | 7x+4/x+2=12 | | X/7-6x=-4/17 | | 13+2p=10 | | -0.4=g/3=0.9 | | 8/3=n/6 | | (6-3x)/4=-3 | | 7d/8=14 | | (2-x)/9=-5 | | 9x²+0x-72=0 | | 10x^2-25=x2 | | (x+8)/9-7=-2 | | (9x-6)/5=-12 | | 8−x/7=−6 | | 4x^2-2-2x=x-5 | | 0.04x=5 | | 6n-85=-31 | | -5n-32=-57 | | 13n+5=213 | | 6n-11=61 | | a÷3+4=11 | | 6(w+5)=36 | | 5x-30+30=30 | | 3n^2+20n+160=0 | | x=(64^12)1/3 | | o/3+4=o/2+3 | | (x-100)/x=0.25 | | 24x-(-24)=24x |